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SUMMARY

Heat-transfer and  skin-friction parameters ob-
tained from exact numerical solutions to the laminar
compressible-boundary-layer equations for the infinite
cylinder in yaw are presented. The chordwise Sfow
in the transformed plane is of the Falkner-Skan type.
Solutions are given for chordwise stagnation flow
with both a porous and a nonporous wall. The
effect of a linear ziscosity-temperature relation is
compared with the effect of the Sutherland riscosity-
temperature relation at the stagnation line of the
eylinder for a Prandil number of 0.7. The effects
of pressure gradient, Mach number, yaw angle,
and wall temperature are investiyated for a linear
viscosity-temperature relation and a Prandtl n umber
of 1.0 with a nonporous wall.

The results indicate that compressibility effects
become important at large Mach numbers and yaw
angles, with larger percentage effects on the skin
Jriction than on the heat transfer. The use of the
two different viscosity relations gives about the same
resulls except when large changes in temperature
oceur across the boundary layer, as for a highly
cooled wall.  The present solutions predict that a
larger amount of coolant would be required at a
qiven large Mach number and yaw angle than would
be predicted from solutions of the corresponding
incompressible-boundary-layer equations.

INTRODUCTION

The so-called similar solutions of the laminar-
boundary-layer equations are obtained by im-
posing certain restrictions on the external flow
and the wall temperature and assuming that the
dimensionless profiles of velocity and temperature

I Supersedes NAC A Technieal Note 4345 by Ivan E. Beckwith, 1958,

are functions of a single variable. The governing
partial differential cquations then  reduce to
ordinary equations, and the qualitative effect of
various parameters on the boundary-layer char-
acteristics can be investigated with much less
computing labor than for the more general case.
The similar solutions are also useful as a cheek
on the accuracy of approximate integral methods
and as the basic information for constructing
approximate methods of the piceewise type, such
as those of references 1 to 3. Furthermore, the
similar solutions are cxact for a few physically
real flows, such as those which oceur on flat
plates, the stagnation region of cylinders and
bodies of revolution, and wedges in flows with
constant fluid properties.

Similar solutions for constant-property flows
are given, for example, in references 4 and 35,
where the cffects of pressure gradient on the
velocity profiles and skin friction are considered.
Solutions for the corresponding temperature pro-
files and heat transfer are given by Squire and
Sibulkin for stagnation-type flows (refs. 6 and 7)
and for various pressure and wall-temperature
gradients by Schuh and Levy (refs. 8 and 9).
The effects of transpiration cooling in constant-
property flows are given in reference 10.

In references 11 and 12 the fluid properties were
assumed to vary as powers of the temperature;
solutions with transpiration cooling were included,
but the results apply only to low-speed flows.
In references 13 and 14 the product pu of density
and viscosity was assumed to be constant in
accordance with the perfect-gas law and a linear
variation of viscosity with temperature. These
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solutions are not restricted to low-speed flows
when the Prandtl number is 1.0. Several solutions
with transpiration cooling were included in refer-
- ence 13. The effects of transpiration cooling on
the heat transfer at the stagnation point of
cylinders and bodies of revolution is presented in
roference 15 for a constant value of pu and a
Prandtl number of 0.7.

The boundary layer on infinite cylinders in yaw
can also be treated by the methods of similarity;
and, in fact, for constant-property fluids the
chordwise flow is independent of the spanwise
flow, which can then be calculated by using the
solutions already available for two-dimensional
cylinders.  (See, for example, ref. 16.) When the
fluid properties are allowed to vary, the chordwise
flow is no longer independent of the spanwise
flow and the equations for the two components
must be solved simultaneously. This problem
has been considered by Crabtree (ref. 17) and
Moore (ref. 18) for a constant value of pu, zero
heat transfer, and 2 Prandtl number of 1.0;
solutions are given for small values of the yaw-
angle parameter A in reference 19, Solutions for
finite heat transfer and small values of X are given
in reference 20. In reference 21 solutions are
given for the flow at or near the stagnation line
with finite heat transfer and large values of X for
Prandtl numbers of 1.0 and 0.7. Solutions for
the case of large suction but small values of X and
a Prandtl number of 1.0 are given in reference 22.

Fay and Riddell (vef. 23) present solutions for
the flow of a real gas, including the effects of
dissociation, at a {hree-dimensional stagnation
point. They conclude, for example, that, when
the Lewis number is near 1, & heat-transfer
parameter in terms of a local Nusselt number and
Reynolds number depends muainly on the total
variation of pu across the boundary layer. For
high cooling rates the effect of fluid properties
becomes more important. Thus, for a ratio of
wall enthalpy to local stream enthalpy of 0.05, the
heat-transfer parameter is about 65 percent of
the value predicted by reference 15 for a constant
value of pu.

In the present paper the effects of wall temper-
ature, Mach number, fluid properties, and trans-
gpiration cooling on the heat transfer and skin
friction of yawed infinite cylinders are considered.
The external flow in the transformed plane is
required to vary as a pOwer of the chordwise

distance from the leading edge or stagnation line;
the injected gas is the same as the boundary-layer
gas, that is, the gas is homogeneous throughout;
and the wall temperature is constant. The density
variation is given by the perfect-gas law, and the
specific heat and Prandt] number are assumed to
be constant. Solutions are presented for Prandil
numbers of 0.7 and 1.0, for ratios of wall tempera- -
ture o stagnation temperature from 0 to 1.0, and
for values of the yaw-angle parameter up to 11.0.
For a Prandtl number of 1.0 and a linear-viscosity-
temperature relation, the pressure gradient is
varied from the infinitely favorable to the value
for chordwise scparation. For the flow at the
stagnation line of the cylinder, solutions are
caleulated by using both the Sutherland and the
linear wviscosity-temperature relations. Numer-
ical examples are given to illustrate the effect of
yaw angle and viscosity relation on the quantity
of coolant required to maintain a given wall
temperature.

SYMBOLS

arbitrary constants

a_ speed of sound

a,b constants in interpolation formula for
taw (4. (48)) )

C constant in Falkner-Skan velocity dis-
tribution (eq. (1a))

€y specific heat at constant pressure

f chordwise velocity function; related to
stream function by equation (Al11)

g spanwise velocity profile function, /e,

44 stagnation enthalpy, CDT+u2+v2

L

ft_— jvaw_‘ Tw

h heat-transfer-coefficient parameter (eq.
(40))

3 static enthalpy

k thermal conductivity

l reference length

M Mach number based on resultant or
total component of flow

m exponent in Falkner-Skan velocity dis-
tribution (eq. (1a))

Nyu local Nusselt number, hxfk,

Ne: Prandtl number, ¢cu/k

P pressure

q heat-transfer rate per unit area

R constant in perfect-gas law (eq. (A3)
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R, local Reynolds number, 21t
w

r recovery factor (eq. (43))

S Sutherland constant (cq. (A2))

s

T,
T temperature, °R
T

n

UW chordwise and normal velocities, respec-
tively, in transformed plane (eq. (B1))

u,r,Ww chordwise, spanwise, and normal veloc-
ities, respectively, in physical plane
{ref. 21)

u, resultant velocity component, (y?4-2)1/2

X7 transformed coordinates (eq. (A7))

x,9,2 chordwise, spanwise, and normal bound-
ary-layer coordinates, respectively,
in physical plane (ref. 21)

@B,y constants in interpolation formula for
h (eq. (47))

a acute angle in chordwise plane between
line tangent to surface and free-stream
direction

2m

S

v ratio of specific heats (1.40 used in caleu-
lations)

g-:__#_ 1_ ilif

y _r—1 /1&,)2 B, dr
f2 \gq
n similarity variable (eq. (A10))
6 enthalpy profile function =i,
: "H,—-H,

0*,6%,G,I£,6,6* integral-thickness parameters in

transformed plane (eqs. (B13))

A angle of yaw (complement of acute angle
between free-stream flow direction and
cylinder axis)

A yaw-angle parameter; ratio of total
stagnation temperature to stagnation
temperature of flow component nor-
mal to eylinder

B viscosity coefficient
v coefficient of kinematic viscosity, u/p
p mass density
T shear stress
o—FH_
Pl
¥ stream  function

w coolant mass flow per unit area, p,w,

- . . . w

w dimensionless coolant-flow ratio, 2%%w
or o

Subseripts:

e local flow outside boundary layer (un-

less otherwise noted)
total stagnation conditions in free stream
w wall
s external  flow at stagnation line of
cylinder or stagnation point on body
of revolution

~

© ahead of bow shock

aw adiabatic wall

c coolant

tr transformed similarity planc
P physical plane

st static

A prime denotes differentiation with respect
to 7.

EQUATIONS AND CONDITIONS FOR SIMILAR
SOLUTIONS

The general boundary-layer equations for the
infinite eylinder in yaw reduce to ordinary differ-
ential equations when the dimensionless veloeity
and enthalpy profiles are assumed to be functions
of a similarity variable and when cortain restrie-
tions are imposed on the external flow conditions
and the gas properties. (Sce appendix A.) The
external flow in  the transformed coordinate
system is restricted to the Falkner-Skan t ype:

U=0Xn" (1a)

where ¢ and m are constants. In terms of the
physical flow this relation may be expressed as

I m
u,,z(&(f ”—”&g"(h) (1b)
Ay \NJo My p, @

from the definitions of 17, and _\.
of sound a, may be written as

o _y—liuy 9
ae*at’\/is 2 (at> (“)

from the definition of ¢, and the use of the adi-
abatic-energy equation in the external flow. The
parameter f, depends on the stream Mach number
and yaw angle as given by the expression

The local speed

1+ Y—Q—IJIJ cos A
li= 3 (3)
1+12—Mj
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The so-called similar solutions can be classified
into two general categories depending upon the
additional restrictions used. In the first of these
categories (subsequently referred to as class 1
flows), the chordwise velocity u,is zero or negligible
in comparison with the speed of sound. Such
flows cxist at or in the vicinity of a stagnation
point or line and on a eylinder at very large yaw
angles. The second category (class TT flows) is
obtained when the valde of u, is arbitrary.

Further restrictions and assumptions which, in
the present investigation, apply to both categories
are

(1) Prandtl boundary-layer equations for the
steady flow of a homogeneous gas

(2) Perfect-gas law
(3) Constant specific heat and Prandtl number

() Constant wall temperature

CLASS I FLOWS

The final ordinary differential equations for
class 1 flows subject to the restrictions and
assumptions listed previously are as follows (see
appendix A for derivation):

(¢f")'+f”f:ﬁ{(f')ﬂ—};[(l—t,,)a
—(1~fs)g*’+tw]} 4)
(¢y")' + 19’ =0 (5)
() - Niuft! = (1= N 7= [V ©)
where the prime denotes differentiation  with

respect to the similarity variable 5. The boundary
conditions on equations (4) to (6) are, at =0,

vodus\ "2 -
f=—wa(% ) @
where f=0 for a nonporous wall and
J'=6=g=0 (8)
As n >,
Jr=0=g=1 ©)

For zero aerodynamic heat transfer the additional

condition required to determine the wall tempera-
ture is that 8,=0.
The general expression for the viscosity function
¢ 1s
=L [(1—t)p—( -ty (0
which, after introduction of the Sutherland vis-
cosity relation, becomes

_L —_ . l_ _ 211/2
qb_(ta.,+s)[1+(,w o= 0= 10,
T totst (I—t)6—(0—1)4"
1f the viscosity is assumed to vary linearly with
temperature according to the relation

u=% T

equation (10) 1s reduced to

¢o=1 (10b)
The functions f/, g, and 8 are the dimensionless
chordwise velocity, spanwise velocity, and en-
thalpy profiles, respectively.  The normal velocity
at the wall w, is determined from equation (7),
where f, must be a constant.

CLASS 11 FLOWS

For class TT flows the chordwise velocity may
have any value so long as equation (1b) is satisfied
and the additional restrictions of Np,=1.0 and
é=1.0 arc imposed. (See appendix A) The
equations with these conditions are

prrsrs-s{ 0=y (- t09— (-1t }

(11
g’ +fg'=0 (12)
g’ +f0'=0 (13)

Tor equations (11) to (13) the boundary conditions
are, at 7=20,

, —1u? [f—l/?
T LI

2 ) dr

f':{?:g:() (15)
and, at p—®,
f=0=g=1 (16)
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Imasmuch as the spanwise velocity profile g is
exactly the same as the enthalpy profile 8, cqua-
ttons (11) to (13) reduce to a fifth-order system.
The normal velocity at the wall w, is

Vi —1 up du,
G

a’) dx

(17)

from equation (14), where again f, must be
constant,

GENERAL EXPRESSIONS FOR HEAT TRANSFER
AND SKIN FRICTION

TRANSFORMATION RELATIONS BETWEEN Z AND 7

Since expressions for the heat transfer and skin
friction involve derivatives normal to the wall, it
is useful to consider the transformation from tho
physical zz-plane to the similarity plane X7.
From appendix A the normal derivative is

a ae P /m+1 [T a
dz a; p; V V,‘\ O'r) (8

Differentiation of equation (1b) written in the

form
e y—1 4""\ ' T
U= ( [f.s 3 (at):l X

and the use of the Stewartson transformation

yield
Ut (&) wipy AU,
‘\’ m ae Moo d'I'

Substituting equation (19) into equatlon (18)
and evaluating at the wall then give

(o).~

or for brevity

(19)

)0
_r—1 &)"’ Br. dr 01/
2 a,

{

(20)

(2.~ (50,

where ¢ is a function of z only Similarly,
can be shown that for a given r-station !ho
relation between z and 9 is

1 7
Z=— f tdn
{u‘\ g- 0

2n

BOUNDARY LAYER ON YAWED CYLINDERS J

where the temperature ratio ¢ is, in general,

(22)

:(]_tw)e—(lhts)g2

LOCAL HEAT TRANSFER AND SKIN FRICTION
The heat-transfer rate per unit area at the wall
is
—k, oT )
0z

which, from the definitions of 77 and 6, may be
Wntton as

Go=ku(T—T,) (g’f)

Then from equation (20)

Qw:kw(TthTu')\?ﬁzz (2‘3)

Combining equations (23) and (14) vields the
relation

c Wy
q:p:——p pfl (T

1 J w

T,)6,, (23a)

which shows that for a given similar flow Gw
varies with z directly as the coolant mass flow
since 8, and f, are independent of .

From equation (23) the expression for the local
heat-transfer parameter A\iy-u/\/l?e is

\V,, hajk,
\ R Pwue‘r/ﬂw
ts r du, ' T,—-T,

Taw_ Tw 0:) (24)

fi— —1 zlﬁ)zbﬂ_l‘(_l’{
Equation (24) may also be written in a form that
does not include a veloc'lty—gradlent term by
using cquation (18) directly in the expression
for g, preceding equation (23). After the defi-
nitions of g and .Y are introduced, the result is

Habo @ -\
Nﬂ__l_i Hepr T—T, Py
VR, 2-8 f“ﬂ'&df Tow—T, "
0 Moy @y
(24x)
When z—0, as at a stagnation line, equation
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(24a) reduces, in the limit, to

JrNu 1 Tlthr

—_— e g

VR v2—8 Towm T

(24b)

A heat-transfer parameter which for given
stream conditions is proportional to the heat-
transfer coefficient A may be written as

hU’km | Pubw ('_.LS A (-L {1_115>
Vpols, lipe | Pobe B \u, dr
4 NI T,
71 yj Taw_Tw h (27))

ts— 2 at

from equation (24) and the assumption that
kwfko=pu/pa-

The expressions for local chordwise and span-
wise skin friction may be written as

ou "
Teh=— M <$> :que\;?fw (26)
or g -
Tsp— M ('a;)u‘:l‘wpf\lg‘gw (2‘)

The total component of the local skin friction in
the direction of the free stream is then

o =ey C(f1 €08 acos A-+g, sin A)  (28)

where a is the angle in the chordwise plane be-
gween a line tangent to the surface and the free-
stream direction.

SIMPLIFIED HEAT BALANCE

Tn the absence of lateral heat conduction within
the porous wall and heat loss by radiation, all the
heat (ransferred to the wall by the airstream
must be absorbed by the coolant. Tf the coolant
flow through the porous wall is assumed normal
to the wall throughout and the aerodynamic heat
transfer is given by equation (23), the resulting
heat balance is

kw(Tt‘ Tw) \:r}_g:o:Puwwcp(Tw# Tc) (29)

where 7. is the initial temperature of the coolant
before it enters the porous wall. Rearranging
equation (29) and introducing f from equation
(14) and a, from equation (2) give a relation

between the pertinent  temperatures and the

. . . ..
parameters 8, and £, involved in the similar solu-
tions. This relation is

T—Te 0 .
=T (30)

which, if any two of the three quantities T, T, or

£, are known, determines the remaining unknown

value since 6 depends only on t, and fu for given
stream conditions and yaw angle. Typical prob-
lems utilizing equation (30) would be to find the
wall temperature from given coolant temperature
and mass flow or to find the coolant flow required
to maintain a given wall temperature. The latter
problem is considered in some detail in the section
entitled “Results and Discussion.”

i radiation and conduction are included, a
more general heat balance, such as that given in
references 1 and 15, must be used.

BOUNDARY-LAYER-THICKNESS PARAMETERS
TRANSFORMED PLANE

Tn various applications of the present results it
is convenicent to have available certain boundary-
layer-thickness parameters which are obtained
from integration of the velocity or enthalpy pro-
files over the boundary-layer thickness. These
parameters are defined in the XZ-plane since
transformation to this plane results in considerable
simplification of any compressible-boundary-layer
calculation. The particular parameters included
in the tabulated results of the present report are
those that appear in the integral boundary-layer
equations which are derived in appendix B.

Transformation from the general Stewartson
variable Z to the similarity variable n (scc appen-
dix A) requires that any thickness parameter in
the X7Z-plane can be obtained by multiplying the
corresponding parameter in the similarity plane
by the quantity

X
Ym+1 U,

Thus, for example, the displacement thickness 6*
in the XZ-plane is defined as

o U
6*:"; (\1 ~ﬁ> (]Z
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or, after transformation to the similarity variable,

X - V,‘Y
“\/mﬂ T, f A== 5 +1 T, %

Performing the indicated integration then vields
the followmg expression for the displacement
thickness 8% in the similarity plane:

5= lim f ""(I_fwn:ligl (ne—fo+fo)  (31)

L g

Similarly, the momentum thickness is defined as
b= lim | = i et [ an)
0 N> © 0

which, after integration of the last term by parts
and 1nt10d11( tion of ff”” from equation (4), becomes

1 17 s .
* — lim mg[fw So—B(futn—1.)

-8 (l{:_l)ﬁh(l—gg)dﬂ
=87 =1 [0 | @2

A spanwise parameter @, is defined as

-llmf (1—g®dy (33)

73 @

which is the sum of the spanwise displacement,
and momentum thicknesses.
The thermal thickness is defined as

0% — lim f " (1—8)dy (34)
]

Ne> ©

The final form of the momentum thickness is
then obtained by substituting equations (31),
(33), and (34) into equation (32), which becomes

ot Lo —Je_ 8 t+(-1) 6,

155 T+l
+1 (t—1) 6 ] (35)

The remaining parameters appearing in the inte-

gral equations (appendix B) may be considered as

convection thicknesses when the analogy between

g and ¢ (for Np,=1) is (OnSId(‘I ed. The spanwise

convection thickness or “mixed” momentum
527412 60——2

thickness is defined as

By=lim | " 0= gl (f.fum [“oridn)

Ne> @ 0
Integrating the last term by parts and using
equation (5) result in

Etr:g:o _fw (36)

Likewise, the enthalpy convection thickness is

0, = liquef’(l—ﬁ)dn=,€+—fw (37)

e ®J 0 i¥pPr
from integration by parts and equation (6).
Equations (35), (36), and (37) show that 6%, I,
and 6, can be written in terms of the derivatives
of the profiles at the wall and the other three
integral thicknesses 8%, @, and 0%,

PHYSICAL PLANE

The momentum and displacement thicknesses
in the physical plane can be expressed in terms of
the thickness parameters in the similarity plane.
The chordwise momentum thickness in the physi-
cal plane is defined as

wetim ) LG T

which, from equation (21) and the perfect- -gas
law, may be written

or——te_ fim f“[f’-(f')?]dn
tw\ g"’“’"’ 0
since §=f’. Then, from the definition of 9%,

(3

*__te o4
3=t (38)
According to reference 24, the physical dis-
placement thickness on a vawed infinite cylinder
is not affected by the spanwise mass-flow defect.
Hence, the displacement thickness is defined in
the usual way as

5,’,"=Iimj (]—- A>dz.
2 Pl

which, from equation (21), the definition of
&%, and the perfeet-gas law, may be written, after
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some rearranging, as

. t, (e[t
s¥=1lim [l,- f (——1>(In+6;';]
7w LE,N TS0 le
Substituting equation (22) for ¢ and using equa-
tion (32) and the definition of 6% then yicld

ts y—1 "r? I+ fz’:_fw
fl,\:z[(izz‘zﬁ‘7>”ﬁ+‘71 o

COMPUTING PROCEDURE

or=

\[ore than 200 solutions to equations (4) to
(6) and (11) to (13) have been obtained by means
of the IBM type 704 electronic data processing
machine. The numerical integration procedure
of reference 25 was used, and the procedure
deseribed in reference 21 for obtaining convergence
to the correct boundary conditions was included
in the automatic programing for the machine.
A step size of 0.2 in 5 was used for most of the
solutions; however, a step size of 0.1 was used
in a few solutions which are included for compari-
son in the tabulated results. The accuracy of
the present solutions, except for 8>1.0 and
fo<—0.5, is believed to be as good as or better

than the accuracy of the solutions in reference
21. The boundary conditions at large values of
7 on j’, g, and 8 were satisfied to within 0.0001.
The solutions were carried out to sufficiently
large values of 5 that the absolute values of the
derivatives of the functions 77, ¢/, and #” were
<0.0005. For negative values of 8 the absolute
values of the derivatives at large values of 7
were <0.00005. Tu all solutions it was found
that these requirements could be satisfied for
n<8. For negative values of 8 there is a problem
of uniqueness (see, for example, refs. 4 and 14)
which is discussed in relation to the present
solutions in appendix €.

RESULTS AND DISCUSSION

The values of fi, gu, 6, &, 8%, G, O, and 6%
which constitute the principal results are presented
in tables T to TV for most of the solutions in the
present investigation. All heat-transfer and skin-
friction cocfficients or parameters as well as most
of the boundary-layer-thickness paramelers can
be derived from these tabulated values as deseribed
clsewhere in this report.  The solutions included
in each table are summarized as follows:

l 1
: Table 8 Np, ¢ s Sw { A
!
1.0 0, 0.5, 1.0
| S 1.0 L0 0, —0.5, —1.0 1.0, 1.6, 3.0, 6.5
0.7 0,05 1.0, law |
0.2 | 0,05 —10 Y0, 1.6, 3.0,
| G 1.0 0.7 %10 | 1 0.05, 0.5, 1.0, L 6.5, 11.0
0.02 |0,-05-075 10
0.015, 0.050, 0.070,
0. 005 0,100 0.150, 0.200,
50, 0.300
M. .. 05 = 07, =1.0]002 0 0.06, 0.20, 0.50 1.0
0. 0625 0.1875, 0.627
0.2 0.05, 0.50 ‘
0.015, 0.050, 0.100, 1.0
0.200, 0.300
0. 005 0.015, 0.050, 3.0
) - - 1.0 0.71 #1.0 0 0.200, Lo
0.015, 0.50, 0.200, 1.0
[au)
0. 0625 0.1875, 0.625 1.0
V() - - 02,05 | 1.0 10 0 0, 0.5, 1.0 1.0, 1.6, 3.0, 6.5
13, 2.0
VL) oo <0 1.0 10 oo 0 0, 0.5, 1.0 1.0, 1.6, 3.0, 6.5
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VELOCITY AND TEMPERATURE PROFILES AT THE
STAGNATION LINE
Typical profiles of the chordwise and spanwise
velocity ratios and the stagnation-enthalpy differ-
ence ratios are shown in figure 1. These results
are for stagnation-line flow (8=1.0), ¢=1.0,
Np,=0.7,and t,=0.5. Note that a given change in
the transpiration-cooling parameter f, has a larger
effect on the g and 8 profiles (figs. 1(b) and 1(¢))
than on the f” profiles (fig. 1(a)) and that these
effects tend to diminish as A is inereased. Inspee-
tion of tables T and IT shows that the seme trends
are present m the derivatives of the profiles at
the wall.  Comparison of figures 1(b) and 1(c)
shows that the g and 6 profiles are roughly the
same shape for Np,=0.7. According to previ-
ous discussion these profiles are identical when
Np,=1.0.
The temperature profile at the stagnation line
(r=0) depends only on the spanwise profile g and

LI IT TR

0 I 2 3 4 5 6

the enthalpy profile 8 as given by equation (22).
The resulting variations in the ratio of local static
temperature to total stagnation temperature are
shown in figure 2 for A=1.6 and 6.5 and for
t,=0, 0.5, and f,, and f,= 0, — 0.5, and —1.0. This
figure illustrates the large changes in temperature
distribution that occur as the yaw angle is in-
creased.  The reduction in heat-transfer rate and
recovery temperature with inereasing coolant flow
are also evident. In regard to (he possibility of
dissociation or other real-gas effects, it is of in-
terest to note that for large cooling rates (small
values of ¢,) the maximum temperatures in the
boundary layer are much lower at large values of
the yaw parameter than at small values of the
parameter.

HEAT-TRANSFER COEFFICIENTS AND RECOVERY FACTORS
E IN THE STAGNATION REGION

Effect of yaw parameter and transpiration
cooling. —Equation (25) shows that for given

K

>
"

(02}

w

i}
|
|

A=30

(a) Chordwise veloeity ratios.

F16URE 1.—Typical nondimensional velocity and stagnation-enthalpy-difference profiles.

¢=1.0; 8=1.0; Np,=0.7;

t,=0.5.



10 TECHNICAL REPORT R—42-—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

5 ]

10r 7 ] = =T | v;‘EAVUAJ

{b)

o] t 2

(b) Spanwise velocity ratios.

Ficure 1.—Continued.

stream conditions, wall temperature, and yaw
angle the heat-transfer coefficient depends only on
the parameter h, which is defined as

- T—T, ,
h=p . (40)

In figure 3(a), T is plotted against A for Prandd
numbers of 1.0 and 0.7 and for f,=0, —0.5, and
—1.0. The figure shows that the parametor—ﬁ
(and hence also the heat-transfer coefficient) is
reduced considerably by increasing the magnitude
of the transpiration-cooling parameter f,, with the
largest reductions being obtained for small values
of X and for Np,=1.0. A change in the value of
the transpiration-cooling parameter, however,
would generally imply a change in the coolant
mass flow and wall temperature. Equation (23a)
can be written in coefficient form as

SR LA Y 41
h *‘?\‘TPI fw ( )

where w=pyw,. Thus, for a finite normal velocity

at the wall, the heat-transfer coefficient is deter-
mined solely by the coolant mass flow and the
parameters f, and h. The parameter f, is related
to the coolant mass flow by means of equation
(7), which may be written as

P — (42)

1t P due

NT, R d:x

Then since the quantity vpw/Tw is nearly constant
for relatively large changes in wall temperature
(for example, a change in Ty of 400° R causes
only a 7-percent change in VEo/ T}, equation (42)
indicates that an increase in coolant mass flow w
would cause a corresponding increase in the mag-
nitude of f., and hence, from figure 3(a), a reduc-
tion in k. It then follows from equation (41), as
would be expected, that increasing w decreases
the heat-transfer cocfficient k. This effect is
shown directly in figure 3(b) where the ratio of
% with transpiration cooling to T for a nonporous
wall is plotted against . The ratio of the heat-
transfer cocfficients is proportional to the ratio of
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(c) Stagnation-enthalpy-differcnce ratios.

Fiatre 1.— Concluded.

the values of % for a constant value of Pulty. Fig-
ure 3(b) is not to be interpreted as indicating an
mcrease in heat-transfer coeflicient with yaw angle
at a constant value of w, since an inerease in yaw
angle causes a large decrease in the local density
pe and velocity gradient du,/dr. Consequently,
for given stream conditions and a constant value
of , an increase in yaw angle decreases the heat-
transfer cocfficient.

The effect of Prandtl number on the heat-
transfer cocfficient is shown in figure 3(c) where
the ratio of % for Np,=0.7 to J for Np,=1.0 is
plotted against X\. This figure shows that the
approximate cxpression

5

T (N p,)0-4
1.0

bl

suggested In reference 21 is adequate for a non-
porous wall but is in considerable crror for trans-
piration cooling.

The recovery factor or recovery temperature
must be known before heat-transfer rates can be
calculated from heat-transfer coefficients. The

recovery factor » defined at the stagnation line as

Taw“Ts

e

(43)

is plotted against the coolant parameter f, in
figure 4. The variation of the recovery factor for
a flat plate from reference 1 is also shown for
comparison. Increasing the coolant flow de-
creases the recovery factor on both the yawed
cylinder and the flat plate.  On the yawed cylin-
der, larger decreases in the recovery factor are
obtained for small values of X than for large values
of \.  The recovery factor on the flat plate is, of
course, independent of the yaw parameter.

Effect of viscosity assumption.—The ratio of
the heat-transfer parameter & from the solutions
calculated by using the Sutherland viscosity rela-
tion to the corresponding value of % for ¢=1.0
is plotted against X in figure 5 for Np,=0.7 and
B=1.0. Three parameters must be considered :
the transpiration-cooling parameter fw, the ratio
of wall temperature to stagnation temperature
te, and the ratio of the Sutherland constant to
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Fravre 2. - Ratios of local slatic temperature to total stagnation temperature.

stagnation temperature s=S/T, T the value
of Six taken as 200° R, then s=0.2 corresponds to
ordinary wind-tunnel conditions with 7,=1,000°
R or to flight conditions with T.~400° R and
M. ~3, while s=0.02 corresponds to T,=10,000°
R or to flight conditions at M. =11.0.

All tesults from the solutions for #,=0.5 fall
within the shaded band in the center of figure 5.
For A>3 and ¢,20.5, the lincar viscosity relation
gives practically the same results as the more
accurate Sutherland relation.  For A<(3 and ¢,2
0.5 the linear viscosity relution results n heat-
transfer coefficients that arc as much as 15 pereent
larger than those obtained with the Sutherland
relation. From a comparison of the values of k
listed in tables T and TT, the largest deviations are
seen to occur when §=0.02, which for #,=0.5
is beyond the range of practical wall temperatures.
For s=0.2 and ¢,=0.5 the maximum differences

¢=1.0; g=1.0; Np,=0.7.

resulting from the use of the two viscosity relations
is about 10 percent.

For 1,=0.05, a value corresponding (o large
aerodynamic heat-transfer rates, the viscosity
relation has a large effect for both values of «
When s=0.2 with £,-=0.05, the use of the linear
viscosity relation results in heat-transfer coeffi-
cients that are from 10 to 50 percent smaller, with
the differences increasing as the transpiration-
cooling rales are increased. For £=0.02 and
t,=0.05 the linear relation has the opposite effect
in that the heat-transfer cocefficients are from 20 to
80 percent larger, with the largest devialions oc-
curring again at the largest values of f,. At some
intermediate value of ¢ the viscosity assumption
might be expected to have little effect even for the
large heating rates. For all conditions cxcept
$=0.2, t,=0.05, and f,=0 and —0.5 the cffects
of the viscosity assumption tend to become smallre
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(a) Variation of heat-transfer parameter with yaw-angle
parameter.

Fraure 3.—Fffeet of yaw angle, stream Mach number,
Prandtl number, and transpiration cooling on heat-
transfer coefficient at stagnation line. ¢=1.0; 8=1.0.

as the wvaw-angle parameter N I8 Increased.

The effect of viscosily assumption on the varia-
tion of heat-transfer coefficient with yaw angle or
vaw-angle parameter may be obtained from figure
5 by noting that

h/hA\;n — }l,r/]l.j:l — 71/’76,13:1
(hfhaco)o=t (Miho—1Yazo (zli%¢: Damo

since from equation (25), k is proportional to &,
for given stream conditions, wall temperature, and
yaw angle. This relation and figure 5 then indi-
cate that (except for s=0.2 and f,=—1.0) when
the Sutherland  viscosity relation is used the
predicted decrease in heat-transfer coefficient with
vaw angle 1s somewhat smaller than when the
linear viscosity relation is used.
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o
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n
w
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o
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wm

(b) Variation of ratio of I for transpiration cooling 1o
h for nonporous wall with yaw-angle parameter.

Fiaurr 3.—Continued,
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(e) Variation of ratio of71' for Np,—~=0.7 Lo  for Np,=1.0

with yaw-angle parameter.

Freore 3.—Concluded.
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Fravre 5.—FEffect of viscosity relation on heat-transfer
coefficient at stagnation line. Np,=0.7; 8=1.0.

The ratio of recovery factor » from the solutions
computed by using Sutherland’s relation to r for
¢=—1.0 is plotted against X in figure 6. This ratio
is found to be essentially independent of the trans-

984

280 — — B "‘

S8 2 73 a5 6 7

Frovee 6.— Effect of viscosity relation on recovery factor.
Np,=0.7; 8=1.0.

piration cooling inasmuch as all results are within
the narrow bands shown in the figure. The
viscosity relation has at most a 2-percent cffect,
which depends only on the temperature level (that
is, on T) and is a maximum for s=0.02 and for
large values of A

Real-gas effects.—The assumptions of constant
specific heat and density variation according to the
perfect-gas law would be expeeted to limit the
application of the present results to relatively low
temperature levels where real-gas effects and, in
particular, dissociation effects are not important.
An indication of the limits of applicability of the
present solutions may be obtained by comparison
with the real-gas solutions of Fay and Riddell
(ref. 23).

Since the solutions presented in reference 23
are for the stagnation point of a body of revolution,
any results from the present caleulations must first
be transformed to the corresponding axisymmetric
configuration before a valid comparison can
be made.

At the stagnation point on a body of revolution,
Tpe=T,, and from the Mangler transformation the
heat-transfer parameter Ny AR, is 43 times
the corresponding parameter in two-dimensional
flow with the velocitv-gradient parameter 3=0.5.
The heat-transfer parameter al the stagnation
point on a body of revolution is then obtained
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from equation (24b) as

:”\Nu InwPy
( /ﬁ) :'\'z(ow,)‘z-dimcusionnl
N g J3-dimensional

where 8, is taken from the solutions for the
unyawed eylinder (A\=1) with 8=0.5. The princi-
pal results of these solutions are given in table
[TT(a), and the resulting values of the heat-
transfer parameter for the stagnation point on a
body of revolution are plotted in figure 7 against
Psts
Pwﬂw'
parison is the correlation given by Fay and
Riddell (ref. 23) for their real-gas solutions of the
cquilibrium boundary layer with a Lewis number
of 1. In reference 23, the Sutherland viscosity
relation was used and the Prandtl number was
assumed to be constant at 0.71.  Since the effeets
of diffusion disappear from the differential equa-
tions for a Lewis number of 1.0 (see ref. 23), the
only differenees between the present solutions and

the ratio Also shown in figure 7 for com-

those of reference 23 would be eaused by the
different assumptions for the variation of density
and specific heat.  The close agreement between
the results of the present solutions and those of
reference 23, as shown in figure 7, therefore
mdicates that the heat-transfer parameter at a
slagnhation point is not sensitive to the effeets of
dissociation on density and specific heat within
the boundary layer. For cquilibrium dissociation
and a Lewis number of 1 the heat-transfer rate
at a three-dimensional stagnation point can then
be caleulated from the equation (ref. 23)

[N =T (N ).
\plLIJIL(lr A\I’r (I.e) (44)

where all quantities would be evaluated for the
real-gas conditions except Ny, AR, which may
be taken from the appropriate solution of the
boundary-layer equations for a perfeet gas with
a constant value of ¢, and Sutherland viscosity law,
The appropriate perfect-gas solution, according

1.0
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Ficure 7.—Ilcat-transfer parameter at stagnation point on a body of revolution (8=0.5) and at the stagnation line of a

yawed eylinder (8=1.0).

A27412--60—— 3

Np,=0.7; f,=0.
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to the corrclation of figure 7, would be the one for
Pslts
whe
real-gas conditions.

Whether this procedure can be extended to the
stagnation line of a yawed cylinder is not known
since the corresponding real-gas solutions for this
case are not vet available. Such an extension
would appear reasonable, however, if the perfect-
gas solutions for the yawed eylinder could be
correlated in a form similar to the results for a
{hree—dimensional stagnation point. In order to
investigate this possibility, several additional
solutions for the yawed cylinder (8=1) were
obtained for the range of conditions used in the
solutions for 8-=0.5. These results are presented
in table TTI(), and the heat-transfer parameter is
plotted in figure 7. For small values of ~ the
heat-transfer parameter for =1 and A=1 to 11
is correlated within about 4 percent by the
expression

which the ratio is the same as in the required

‘\?VU ( PsHs )O‘“
—==0.5{— 15
\ Rrs Prlhe. (40)

The values that are not correlated by equation
(45), that is, the values for A=6.5 and 11 with
§=-0.2, are not representative of flight conditions
since such values occur at large Mach numbers
and large yaw angles but with T,=1,000° R.
By analogy with the results fora three-dimensional
stagnation point, it may be assumed that the heat
transfer at the stagnation line of a yawed cylinder
in a real-gas flow (with equilibrium dissociation
and a Lewis number of 1) can be caleulated from
equations (44) and (45) with 77, replaced by the
adiabatic wall enthalpy I, From equation
(43), the value of 11, would be

IIaw:’)(IIe'—'is)_%‘is
where, from the adiabatic-energy equation, 7 is
defined as

i=H, g3

and from figures 4 and 6 the recovery factor is
approximately
Ty NI’r

The effect of the viscosity relation at a three-
dimensional stagnation point can be obtained
from figure 7 by comparison of the results of

Pshs
Pulw
The use of the Sutherland viscosity relation for
the range of ¢, and s in the present solutions
predicts smaller values of the heat-transfer
parameter than those given by reference 15 for
a lincar viscosity relation. The maximum cffect
is found again for small values of #, and »; for
example, with £,=0.015 and <=0.005 the heat-
transfer parameter is about 50 percent of the
value given by reference 15.

reference 15 for —1 with the present solutions.

VARIATION OF COOLANT FLOW AND WALL TEMPERATURE
WITH YAW ANGLE AT THE STAGNATION LINE
OF A CYLINDER

Interpolation formulas for A.—The problem
of calculating the wall temperature from given
stream conditions, coolant temperature, and
coolant mass flow may be solved by means of
equations (30) and (42) and graphical interpola-
tion for & and f.e. The general procedure would
be to assume a wall temperature and calculate a
first approximation for f, from equation (42).
This value of fu, together with the assumed wall
temperature and stream conditions, is used to
determine A and f.. from interpolation in figures
3(a) and 4. The corresponding value of 85 is then
used in cquation (30), which is solved for T
Only one or two iterations would normally be
required becanse the quantity u./ Ty is such a weak
function of 7.

A problem that is perhaps of more interest is to
determine the quantity of coolant required to
maintain a given wall temperature. Since 0y is a
function of f,, equation (30) has to be solved by a
trial-and-error process for fo after which the
corresponding coolant mass flow is determined
from cquation (42). This trial-and-error process,
however, would be tedious and inaccurate sinece
interpolation for 8, as a function of fy, N, and fy
would generally be required.  The limited number
of solutions available, as well as the behavior of
9. for T,—>Taw, makes such an interpolation
impractical. On the other hand, the funetion A
is in the form of a coefficient and hence remains
finite for all values of t,. Thus, in order to facili-
tate intvﬁpo]u‘tion, equation (30) is written in

terms of h as

Tow—Te kb

fu-= - w Tc jj.\v_‘r (46)




THEORETICAL INVESTIGATION OF LAMINAR BOUNDARY LAYER ON YAWED CYLINDERS 17

and & is assumed to have the form

]C‘:(’(;01102_*"601(10“*_70)1.14727L (altw2+61tw+‘_yl)fw

+ (a2tw2+62tw+ ;2) (47)
where @, 8, and 7 are constants for any given set of
N, Ng, and s or ¢. In general, nine exact solu-
tions at a fixed value of A would be required to
evaluate the nine constants in equation (47). For
Np,= 1.0, the required nine solutions are available,
but for Np,#1.0 (see tables T to IIT), only six
solutions are available for evaluating the con-
stants since the limiting value of & for 7T,= Ty,
apparently cannot be calculated from the zero-
heat-transfer solutions. However, for N, = 1.0,
the same form of equation (47) was retained by
assuming that at f,=4¢,,

().
Ot/ Np10 \Olw/Np=10

The resulting values for the constants in equation

(47) for both N, 1.0 and N,,=1.0 are given in
table V. For Np, 1.0 the recovery temperature
fow 15 assumed to be linecar in f, (for Np,=1.0,
tuw=1.0) since from figures 4 and 6, r is linear in
Jw to within about 0.25 percent. Henece, for the
application of equation (46), f,, is given by the
equation _

low=a+bf (48)
The constants @ and 3 are also listed in table V.,
Combining equations (46), (47), and (48) gives a
quadratic equation in f, for Np=1.0, and for
Npr#1.0 there is obtained a cubic equation which
can be eusily solved for f, by standard graphical
methods.  The interpolation formulas (47) and
(48) are also convenient in the first type of prob-
Iem in which the wall temperature is calculated
from given coolant mass flow.

Typical examples.—Equations (46), (47), and
(48) have been used to caleulate the coolant mass
flow required to maintain a constant wall temper-
ature in the following three examples:

Fxample T, Tw 7, A,
1 10, 000 1, 500 500 10 |
2 1, 800 800 500 10
3 5, 000 1, 500 500 7

Examples 1 and 2 represent flight and wind-tunnel

conditions, respectively, at A, ~10. Example 3
represents flight conditions at A/, ~7. The re-
sults are shown in figure 8(a) where the parameler
(from eq. (42))

© =[P eos 4 LA
(—#;'T)l/?— \/pm cos A - (I.I‘ f,,
Pl ol Ty

which is direetly proportional to the coolant
mass flow, is plotted against yaw angle for $=1.0
with Np,=1.0 and 0.7. Examples 1 and 2 have
also been calculated for ¢5<1.0 with ) pr=0.7 and
§=0.02. The values used for the veloeity-

. ! du
gradient  parameter (1—; —d-r—“) were taken from

reference 21 for a circular eylinder.
Figure 8(a) shows that the coolant mass flow

Example My 4, fe Conditions
I 10 015 0.05 Flight
2 10 44 30 Wwind tunnel
3 7 30 .10 Flight 1
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Izh_v 1 ]07 _ ]
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" _j \\ ) 4 N 7 *I.VExample ] R
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Ll D IND ”éxomple 2ip$=10 i
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L :\<2‘§§~ N jeExample 3] | | | ]
I\BIQ 8 ,J,\.f\éx ,/L S| S G S I B
T~ \ N - JJ, |
3 SO i ~ | 5 —3 1
(R “rd jﬁ. i _fExample 1) | | |
1 k. IBEN "x «\/ e Pe#£10
] Y, .
6 \7\* N R\ 7x‘k\\ Example 2] 7[7
\ 'y NN
——— L ;VL, — _-\)\x - 1 1
sFT NG N\ H-
4 e N A I
4 DARNLY i
~IN
S U N N .
~N
3 - et LIS -
2 S U S N \ —
W N _ N W N B R P
! —t -+ \;» ~
1L | I I . Fcr)
(o] I0 20 30 40 50 60 70 80 90

Yow angle, A, deg
(a) Variation of coolant mass flow with yaw angle,

Fiavre 8. -Typical examples illustrating effect of yaw
angle, Prandtl nummber, and viscosily relation on
coolant mass flow required to maintain a constant wall
temperature.
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required to maintain a given temperature deereases
with increasing yaw angle, as would be expected
from previous discussion. At small yaw angles
considerably more coolant is required for Np,=0.7
than for Np.,=1.0; however, the effeet of Prandtl
number is not so large for large yaw angles. The
curves caleulated for examples 1 and 2 with
¢—0.02 indicate that the use of the Sutherland
viscosity relation predicts that less coolant is Te-
quired than when the lincar viscosity relation is
used.  The variation with yaw angle is about the
same for both viscosity relations. Note that in
example 1 the curve for ¢=1.0, . 7pr=0.7 is almost
the same as the curve for ¢=1.0, ! o, — 1.0.

In figure 8(b) the corresponding variation of f,
with X is shown for these examples. This varia-
tion is essentially an cffect of compressibility in
the boundary layer since for an incompressible
boundary layer f, would be independent of yaw

T — T
Exomple Mgy fw % Conditions o
} 10 045 005 Flight
- 2 10 44 28  Wind tunnel .
3 7 30 .10 Flight

T

=

L
1

T
|1

~Exomple |

T1|

~Example 2 :

Yow parometer,

angle. The present solutions predict, therefore.
that at large Mach numbers and yaw angles the
coolant requirements would be some 50 pereent
targer than for an incompressible boundary layer
with the same wall temperature and oxternal flow
conditions.

EFFECT OF PRESSURE GRADIENT AND YAW-ANGLE

PARAMETER ON SKIN FRICTION AND HEAT TRANSFER

The effects of the pressure-gradient parameter
3 and the yaw-angle parameter A on the heat-
transfer and skin-friction parameters for three
different ratios of wall temperature to stream
temperature are shown in figures 9 and 10.  These
solutions are for the conditions of ¢=1.0, Np=1.0,
and f,=0. The heat-transfer and skin-friction
parameters, as well as other pertinent data from
these solutions, are also given in table IV,

Figure 9 indicates that the offeets of pressure
gradient on the heat-transfer parameter 6;, or the

1
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() Effect of compressibility on transpiration-eooling parameter. Curves for ¢=1.0 have been arbitrarily extrapolated

from A=06.5

to 11.0.

Fiarre 8.—Concluded.
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Variation of
skin-frietion parameters with pressure-gradient param-

Frcore 9.

eter. ¢=1.0; N, =1.0; f,—=0.

spanwise skin-friction parameter ¢, (for Np,= 1 .0,
0,=gw) become larger as the wall temperature
and yaw parameter are inereased. For negative
or favorable pressure gradients (positive values of
8) the values of 8, and ¢, are increased as the yaw
parameter A and the temperature ratio t, are
increased. For adverse pressure gradients, cor-
responding to negative values of 8, the values of
8., or 7 decrease considerably with increasing A
or t,. For zero pressure gradient, 8, or ¢, is in-
dependent of both X and ¢,. The effeet of these
changes on the actual heat transfor or skin friction
would have to be caleulated from cquations (23)
or (27) for any given set of flow conditions and
wall temperature,

The chordwise skin-friction parameter 1 s
plotted against g for three wall-temperature ratios
and four values of A in figure 10. The trends
shown in figure 10 are the same as those just dis-
cussed for 6,, or g,; however, the pereentage vari-
ations in £,/ are much larger than in the other

parameters.  These large variations are partic-
ularly noticeable for large values of A and te.
The loeal skin friction must again be caleulnted
for any particular case from the appropriate
equations (eq. (26) or (28)).

The value of the pressure-gradient parameter 8
required for f, =0, implying separation of the
chordwise flow, is plotted against A in figure 11,
This figure indicates that decreasing the {em-
perature would delay separation, while increasing
the yaw angle (at a sufficiently large stream Mach
number) would move separation forward.

The ratio of the chordwise skin-friction param-
cter to the spanwise skin-friction parameter
Ji [ 18 indicative of the degree of secondary flow
in the boundary layer, as discussed in referencoe
21. The valucs of these skin-friction parameters
listed in table TV show that the ratio Tl is a
maximum for 8=2.0, unity for a flat plate (8=0)
where there is no sccondary flow, and zero for
chordwise separation where the “surface” strean-
line is exactly in the spanwise direction.

The problem of uniqueness for the solutions
with negative g is discussed in appendix C.  The
particular solutions presented in table IV were
obtained by application of the convergenee pro-
cedure of reference 21 at =8, The tabulated
solutions also satisfy the boundary conditions on
J7 and 8 at n=8 to within 0.00001 with the absolute
values of /" and ¢ = 0.00005. Tt was found that

S’ = 1.00000 throughout the boundary layer when

these conditions were satisfied and that applica-
tion of the convergence procedure of reference 21
to values of 7 > 8 resulted in no appreciable
changes in 1,/ or 6,,.

CONCLUDING REMARKS

General equations for the heat transfer and skin
friction in the laminar compressible boundary
layer on infinite eylinders in yaw are presented for
the ecase in which the velocity and enthalpy pro-
files are functions of a similarity variable. By
means of numerical solutions of the boundary-
layer equations, the effects of transpiration cooling,
Prandtl number, and viscosity relation were ob-
tained for stagnation-line flow. The effect of
chordwise pressure gradient was investigated for
a nonporous wall, a Prandtl number of 1.0, and a
linear viscosity-temperature relation.

Transpiration cooling reduces the skin-friction
and heat-transfer coefficients by large amounts,
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Tiaore 10— Chordwise skin-friction parameter. ¢=1.0; Np,=1.0; fu=0.

with the largest percentage reductions occurring by (Np,)** for a nonporous wall; however, for a
at small yaw angles and for a Prandtl number of  porous wall this expression is In considerablelerror.
1.0. The effect of Prandtl number Np, on the Recause of an overall reduction in heat-transfer
heat-transfer coefficient is given approximately coefficient with yaw angle A, the quantity of
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Ficure 11.—FEffect of yaw and wall temperature on
pressure gradient required for chordwise separation.
¢=1.0; Np,=1.0; f,=0.

coolant required to maintain a given wall tem-
perature decreases with inercasing A; however,
this decrease is not so large as that which would
be predicted from solutions of the incompressible-
boundary-layer equations.

Comparison of solutions computed by using
the Sutherland viscosity-temperature relation with
solutions computed by using the linear viscosity-
temperature relation indicates agreement in heat-

transfer coefficients to within about 10 perecent
when the ratio of wall temperature to stagnation
temperature T,/7,20.5. When T/ T:=0.05, the
heat-transfer coefficients from the two sets of
solutions for a cylinder differ by 50 to 150 pereent
depending on the temperature level and yaw
parameter.

The values of the heat-transfer parameter af.
the stagnation point on a body of revolution ob-
tained by the present method with the Sutherland
viscosity-temperature relation and a Prandtl num-
ber of 0.7 are in close agreement with the corre-
sponding results of Fay and Riddell for a real
gas. This close agreement indicates that the
heat-transfer rates at the stagnation point of a
body of revolution or at the stagnation line of a
yawed cylinder in a real-gas flow at equilibrium
dissociation may be calculated by using the Suther-
land viscosity-temperature relation, the perfect-
gas cquation, and constant specific heat in the
solution of the boundary-layer equations. The
flow variables appearing in the final expression for
the heat rate must be evaluated at the real-gas
conditions.

The effects of pressure gradient on the heat-
transfer and skin-friction parameters become
larger as the yaw parameter and wall tempera-
ture are increased. Caleulations for an adverse
pressure gradient indicate that at sufficiently large
values of the stream Mach number the separation
line of the chordwise flow would move forward as
the yaw angle is increased.

L.ANGLEY RusEaRcH CENTER,
NATIONAL AERONATTICS AND SPACE ADMINISTRATION,
LanagLey Fiuwp, Va,, June 25, 1958.



APPENDIX A

DERIVATION OF SIMPLIFIED BOUNDARY-LAYER EQUATIONS

The equations solved in the present report are
essentially the same as the equations of reference
21 except for the boundary condition on the normal
velocity at the wall and the assumption used for
the viscosity- temperature relation.  The normal
velocity at the wall is herein assigned a finite value
to simulate a porous wall. The injected gas is
therefore assumed to be the same as the gas in the
boundary layer; that is, the equations apply only
for a homogom\oua gas throughout. Numerical
solutions to the present equations are obtained for
both a linear viscosity-temperature velation of the
form

Lo (A1)

awd for Sutherland’s relation

32T S s
,uw (T T# S \AZ)

In both cquations (A1) and (A2), g, would be
evaluated as a function of T, from the best
viscosily data available.

Since the basic equations for the compressible
boundary layer on the infinite cylinder in yaw are
given clsewhere (for example, ref. 21) they are not
repeated herein,  The assumptions and restric-
tions used to obtain the following equations are

(1) Prandtl boundary-layer equations for the

steady flow of o homogencous gas

(2) Perfect gas law

p=pRT (A3)

(3) Constant specific heat and Prandt] number
(4) Cylinder of infinite length {spanwise de-
rivatives vanish)

Introducing the stream function and the Stewart-
son transformation in the same manner as in
reference 21 then results in the following system of
cquations in the transformed coordinate system
X, Z:

22

Chordwise momentum equation:

o oy W Leleeii-to
dZ 00X 07 oXoZ* (, dX bt

o [ O
—(1—t)? e g
(=)t v o (9570 ) (A9
Spanwise momentum equation:

X dy WOy O [ 0y .-
273X oxoZL a/("’ (A5)

Energy equation:

oy 20 DY 8 1—0 DY diu
3Z0X 0X Z ' 1-1,0ZdX

[ lr—‘Tp,v u2+v ]
J\',,O/ 1—t,

(A6)

The Stewartson transformation used in equations
{
(A4) to (A6) may be defined as

‘\':f "LIL pl[ l [
0o M Pr @

7.0 f Pa b (A7)
0 P

a,

- oY
U= 07 J

and the stream function is defined by

HN_r

0z qu
o4 __»p.
or Prw

The viseosity function ¢ may be written as
_u Ty
T (A8)

on account of the perfect-gas law and the fact that
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op

b—*O in a thin boundary layer. In general, T

may be expressed as

T, [ (1— 16— (1— 1)

(]

from the definitions of H, 8, and ¢ and the use of
the adiabatic-energy equation for the external
flow. The quantity f, depends on the spanwise
velocity and can be written in terms of the stream
Mach number and yaw angle as

1+ 1[ Zeos? A

which indicates that #, is simply the ratio of the
stagnation temperature of the flow component
normal to the cylinder to the total stagnation
temperature. Note that the yaw parameter ¢, as
defined here is the reciprocal of the Mach num-
ber—yaw-angle parameter used in reference 21.

Similar solutions to the system of equations
(A4) to (A6) are obtained by first assuming that
the dimensionless velocity and enthalpy profiles
/U, g, and @ are functions of a single similarity
variable # and then determining the additional
conditions Ttequired to reduce the system to
ordinary equations (sec, for example, ref. 14).
The similarity variable is defined as

m+1U,
7= /mvt—X (A10)
and the assumptions for the profiles are
‘p ’\/ +1 Vt[ i‘xf(‘r,)
(A1D)
g=g(
§=6(n)

where U7 —a, and =1 1% Then, if the ex-

ternal flow is uf the Falkner—Skan type
U,=0X" (A12)

the system of equations (A4) to (A6) is reduced to

the following form:
a ¥ rre_ ’ __1_ -
5 6 )+ 1-8{ (11— F 10100

—(1—13)92+1‘u]} (A13)

0, '
a—n(fbﬂ )+f9'=0 (A14)
,_2Np X[ 186 dt,
(¢9)+A 2l m+1 1—t,dY
b D ,
22 (o T a-0 @ })
(A15)
where the primes denote differentiation with

2
respeet to », and B=m—+1-

ditions on equations (A13) to (A15) are now,

The boundary con-

at p=0,

&) _I 3 e
f=—w,|” ( +—~u— ‘I”] (A16)

8

where w,=0 for a nonporous wall and
f'=6=¢g=0 (A1)

At n—>w,
f=0=g—1 (A18)

For zero acrodynamic heat transfer, the wall
temperature in equations (A13) to (A15) is re-
placed by the adiabatic wall temperature 7.
Since Ty, is then an additional unknown, an addi-
tional equation or condition is required in order to
evaluate 7,,. This additional condition is

708

<b77>w_0
from the definition of 8. Since ¢, and u, are, in
general, functions of X, equations (A13) to (A16)
are not yet consistent with the original assump-
tions for the profiles as given by equations (A11).
A consistent set of equations cannot be obtained
when £, is a variable except for incompressible
flow (t, =~ 1.0,{, = 1.0, u, < a,) for which ¢, may
take the form (see ref. 9)

(A19)

fe=1+A4X"

For compressible flow it is necessary to specify
that ¢, is constant.
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While the chordwise veloeity U7, must always
satisfy equation (A12), the specific value of this
veloeity required to make equations (A13) to
(A16) consistent with equations (Al1) depends
also on the viscosity assumption and the value
of the Prandtl number Np,. For arbitrary values
of ¢ and Np,, u, must be either zero (or negligible)
or a constant other than zero. The first term on
the right in equation (A15) and ¢ then become
functions of 7 only. When u, is constant, §=0,
and the equations reduce to the flat-plate case,
which is not considered further herein, At X=0,
u,=0 and the equations describe the flow at the
stagnation point on a body of rev olution (where
B8=0.5 and t,— 1.0) or at the stagnation line on a
evlinder (8=1). Equations (A13) to (A16) then

reduce to

@y {0100

(0g’) +f9'=0 (A21)
(¢6,>,+:\TPr.f6,:(1 Pr) [¢((/2) ]
(A22)
. —1;2
fw: — W, V—g ((llu;] (A\Qg)

with the remaining boundary conditions the same
as equations (A17) to (A19). Equations (A20)
to (A23) apply approximately when u,<a, which

occurs, for example, in the neighborhood of a
stagnation line where §=1.0. Small chordwise
velocities would also be expected over the entire
cylinder for large yaw angles when the value of 8
may be arbitrary. Note that equation (A23)
specifies a chordwise distribution of w, since f,
must be a constant.

Tn general, when 1,0, a consistent set of equa-
tions ean be obtained only for the condition of
Np=1.0 and ¢=1.0. The condition ¢=1.0 is
obtained by substituting the linear viscosity rela-
tion given by equation (A1) into equation (AS8).
The equations (A13) to (A15) then reduee to

f’ll /If B{

LA t)9-(1—t)e+t, ]}
(A1)

0"+ fo’ =0 (A25)
where for these conditions 8==¢, from the boundary
conditions (A16) to (A19) and equation (A14)
with ¢—=1.0. The boundary conditions applying
to equations (A24) and (A23) are the same as
equations (A16) to (A18). Since f, must be a
constant, the normal velocity at the wall varies

according to
v, rlu
fu ‘ +_'—_ 2
d, f[J”

or in terms of the transformed coordinate

; - ”“’ /m+] T —1
We=—F4 o, al\ 2 v, (X

(A26)




APPENDIX B

INTEGRAL EQUATIONS IN TRANSFORMED PLANE

A large group of approximate methods for
caleulating laminar-boundary-layer characteristics
are based on the integral equations which are
obtained by integrating the partial differential
equations across the boundary layer normal to
the wall.  After suitable assumptions are made for
the velocity and temperature profiles, the problem
1s thereby reduced to the solution of a set of ordi-
nary differential equations.  Even though the
original boundary-layer equations are satisfied
only on the average, these methods are usually
considered to be sufficiently aceurate for practical
purposes.  (For a general review of integral
methods, see ref. 26.)

Some of the “piccewise” methods (for example,
ref. 1) which use basic information from the similar
solutions are also found to satisfly the integral
momentum or energy equations.

In the application of integral methods to the
compressible boundary layer, substantial simpli-
fications are obtained by transforming to the

AZ-plane. The velocities in this plane are defined
in terms of the stream function ¢ as
=37
’ B
w—_2¥¢
o.Y
so that the continuity equation is
ol” ol —
oxtaz= (B2)

Substituting equations (Bl) into equations (A1)
to (A6) of appendix A vields

bT oy ot U, dl,

07 1, ax W1~ tw?

0 /. ‘
—(1—1) P+ tul+r, YA (¢ a_7> (B3)

ZV

- Qg - a(/ . afl ’
‘\'+1I =7, a/ (¢ (B_‘)
T e IH v, e, 06
ot U -3, (o 2
v, 1—Np, O ) -_
—ﬁ ]—fw O—Z [¢<[a——fe) SZ (\L’vez)
+¢.(1 7 ((/ ] B.))

where the  adiabatic-energy  equation for the
external flow has been used in the last term of
equation (A6).  The boundary conditions for
equations (B2) 1o (B5) are, at Z=0,

U=6=g=0 (B6)

=1, (B7)

where T, =0 for a nonporous wall; and, at VAT R

U=C, (B8)

g=0=1 (B9
The conventional boundary-layer assumptions also
require that all derivatives of 17, g, and 8 become
negligible for large values of Z. For zero heat
transfer the additional condition (06/07),=0 1is
used to determine the adiabatic wall temperature
Taw. Combining cquations (B2) and (B3) and
integrating from Z=0 to » with boundary con-
ditions (B6) to (B9) then yield

rore W, , 1dC, r
,L\f "(*7)‘12—‘ t, (1\{ f ((
;__ N _l_ — — —a?
-5 (/Z-{-ﬁ (1 [vg A7+ 13[(1 ’s’ﬁ (1—g?)

e SN vy U
fzz+(fu.~1)f0 (1~6)(M]}--(‘;<a7('}>w B10)

Equations (B2) and (B4) can be combined in
25
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the same manner to give

d (~ W,
ix (' -(1- g NAZ—,
1 dlU, m(Y bq ,

Similarly, equations (B2) and (B5) yield

d (°U 1 dU,
). T (1—0)dZ— F +l' in 8(1—6)(1’Z

1 dis 20
—1—t,,de 7,1 6)dZ= (SZ

The integral-thickness parameters are defined
as follows:
T T2 N
o f v —L;f_,)zz

o[ (-

G= f (1—g2)dZ

(B12)

! (B13)
Ee f -(11,)(12

0= [, (1—0)(1/
0

9*=J; (1—6)dZ

Substitution of these parameters into equations
(B10) to (B12) then gives the final form of the
integral equations as

Ot S { o o 10— G ) ol }
=T 07( >+rw (BL4)

gl;'f axXTT )+1 (B15)
m*“(z1 ((II(Y 1—]tw§i{ =N M +ILY
(B16)

The normal velocity at the wall in the trans-
formed plane is related to the corresponding
velocity in the physical plane by the relation

a
W,=2 2t
P Qe

from ecquations (A7) and the definitions of U
and W.



APPENDIX C

UNIQUENESS OF SOLUTIONS FOR NEGATIVE VALUES OF g8

In order to discuss the uniqueness problem for
negative values of 8 (see refs. 4, 5, and 14) it is
useful to consider the asymptotic solutions to
equations (A24) and (A25). These equations
apply for ¢=1.0 and Np,=1.0 and are as follows:

rez r7 ’ 1
FAE ) fzﬁ{ ¢ )2—2“[(1‘-110)9_(1_ts)02+tw]}
(C1)
6"+ f0'=0 (C2y
The boundary conditions are, at =20,
f:.fw (C3)
J'=0=0 (Cq)
and, at n—oo,
f/=6=1.0 (C5)
The functions f” and 8 may be writlen as
fr=1-f
g (C6)
0=1—0

where, at large values of g, f— and 6 are small
quantities because of boundary conditions (C3)
to (C5). . Substituting equations (C6) into equa-
tions (C1) and (C2) and retaining only the linear
terms in f and 0 result in the equations

?"+7’f=26.7+65(]#’—"—2) ©7)
8- 6 =0 (C8)

which are valid only at large values of 5. The
boundary conditions for y—« are now

e

=0
=0

D1

The function f may be written by definition as

f=fc+ﬁif’dn

which, from equations (C6), becomes

.f:fe+f: (1—F)dn

If the quantityf fdn is assumed to be negligible,
Ne

the asymptotic expression for f is

f=fetn—n. (C9)
Introducing the variable 7 defined as
n=n+(fe—n.) (C10)

and substituting equation (C9) into equations (C'7)
and (C8) then result in

Pf - df o7, o1+,
Ui Gmogieai( 1 Tle—2) )
0 _do
(ﬁ-‘rn (l_ﬁ_o (C12)
The required solution to equation (C'12) is
Tgiet [ e
n
since from equation (C10) %#.,=f.. For Ilarge

values of 7 this relation may be expressed as (see
ref. 27)
- e%([}_,’ﬂ)

=0, g

n

(C13)

Thus at n=rn,, where 7, is such that (C9) is satis-

fied, the asymptotic solution for § as given by
equation (C13) requires that approximately

8.

6, =1—+

Je

(C14)

which may be verified for 3=1.0 from the tabu-
lated results for Np,=1.0 in reference 21.
Substituting equation (C13) into equation

27
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(C11) results in the linear differential equation

d? f (/f T4+t .
d? ri'q ‘76;*6( *_7>0

BIEE D)

(C15)

A particular integral of this equation valid for
Iarge values of 7 1s

_l”2
= ¢ 2 ¢
f=aA"— (C16)
n
where, by substitution in equation (C15),
A G ) LA o

The general solution to the homogencous part of
equation (C15) for large values of 5 is (see rel. 4)

= B o
J= i et AT (C18)
n e

where for 30, K=0 in order to satisfy the
boundary condition f=0 for g—>o.

For 8<C0 this boundary condition can be salis-
fied with any finite value of A and the general
solution to equation (C'15) then becomes

H[

which is valid only for large values of 57 and g<C0.
Since equation (C'19) is a solution for any value of
K, further restrictions must be imposed hefore a
unique solution can be obtained.  Hartree (ref. 4)
sels K=0 for reasons of continuity and con-
sistency with the 820 case.  C'ohen and Reshotko
(ref. 14) state further that for 8<C0 it is necessary
to set A=0 to avoid infinite displacement thick-
ness. For K=0 the constant B may be obtuinod
from equation (C19) evaluated at =%, The
final asymptotic forms for f/ and ¢ may then be
written as

+(ﬁ) [1‘-““<1 13;{ >f]} (€20

_1 &
B

HI ,e”}_

+=agen [+ K7 (C19)

f=1— (C21)

Equations (C20) and (C21) are now unique solu-
tions for all values of 8, and a study of their

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

propertics for <0 may be used as a guide to
obtain by numecrical methods the corresponding
unique solutions of the original nonlinear differ-
ential equations (A24) and (A25).

For purposes of comparison, consider first the
cases for 830 and 3=0. For >0 the first term
in the braces of equation (('20) dominates so that
for very large values of 7 there remains approxi-

mately
16 (] e tw)
62(,,2 AT 2,

Hence for 8,250, f/—1 from above or below ac-

I'=1—

+iw

2,

cording to whether is greater or less than

1.0. ANl numerical solutions (whether unique or

not) obtained in the present investigation for

AN,,=1.0 show that 8,=0 for both negative and

positive values of 8. The asymptotic solutions

for =1.0 are discussed in detail in reference 21.
For 8=0, equation (C'20) reduces to

1
P ==y £ 010

which shows that for £;< 1.0, f’—1 from below.

For 8<.0, the sccond term in the braces of
equation (C'20) dominates so that for very large
values of 7

e

(5 [ (=0)7]

which shows that f/—>1.0 from below if

1—f€)>(l 1“"% (C22)
This inequality would always be satisfied for
6:>0 and filif 1_H">l On the other hand
f7—1.0 from ahove :f a

a—m<(1-5 ) % (C23)

which is always satisfied for ;>0 and fi>1 if
14ty 14ty

2t, 2
is possible when velocity overshoot (fe>-1) occurs

it “”

A< 1.0. Apparently a unique solution

—L#321.0 and equation (C21), as well as

all boundm'y conditions, are also satisfied.
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(The situation for negative values of 8, or adverse

pressure gradicnt, is the exact opposite of that at

positive values of 8, or favorable pressure gradient,
. t

where velocity overshoot oceurred for —+~’97\>1 0.)

In the present solutions for negative values of g

1414,
2

the smallest value of - Ais 0.8, a value cor-

responding to #,=0 and A=1.6. (Solutions for

A=1.0 are given in ref. 14.) Tf a valid solution
with velocity Ovmshoot is possible, it would be
expected for these values of ¢, and X. A series of
solutions were then obtained for te=0,A=1.6, and
B=—0.2 for different values of 5, say n*, at which
the convergenee procedure as deseribed in reference
21 was applied.  Pertinent values from these
solutions are presented in table VI. Examination
of the tabulated values (at n=6.0) of (1—/.) and

I lf
(I———it )0 =0. _j shows that when inequality
€

(°23) is satisfied the boundary conditions on f’
an(l g at large values of g are not satisfied. Further-
more, ecquation ((21) is not satisfied since 6,
always remains positive even when 8>1.0.

The boundary condition on 8 was not satisfied
to a high degree of accuracy until f,<1.0 for |all
values of 4 whereupon the inequality (C22) was

satisfied at p=6. Tt is therefore concluded that
for the particular convergence procedure used
herein it is not possible to satisfy equations (("20)

. 14+1,
and (C21) simultancously when - '2{ A=Z1.0 and

velocity overshoot occurs. Tn other words, while
equation (('20) permits a unique solution with
velocity overshoot, the required boundary condi-
tions on ¢ and 6’ cannot be obtained when veloeity
overshoot is present.

The results shown in table VI also indicate that
increasing »* from 6.8 to 10.4 resulted in no change
in f7 and 6, and very little change in any of the
tabulated values at comparable values of . The
same behavior was noted in several other sets of
solutions at different values of .., A, and negative 3.

In view of the preceding discussion concerning
the asymptotic solution and also beeause of the
tendencey for [ and 8, to approach constant values
as 7* is increased, it was assumed that, in general,
unique solutions could be obtained by using

=38.0 provided that /<1 for all values of » and
the boundary conditions at n=8.0 were satisfied
to within 0.00001 on ¢ and f’, and to within
0.00005 on 8" and f”. All final solutions for
negative values of 8 as presented m table TV
satisfy these conditions to this degree of aceuracy.
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TABLE TTT. -BOUNDARY-LAYER PARAMETERS CALCULATED FOR STAGNATION FLOWS BY USING
SUTHERLAND VISCOSITY-TEMPERATURE RELATION AT PRANDTL NUMBER OF 0.7
WITH NONPOROUS WALL

(a) Body of revolution; 3=0.5

s b s o 0 . <‘,) s | ¢ | e o
VR /3. dimensional

0. 015 0. 2051 | 0. 2518 | 0. 2168 | 0. 1625 0. 3066 0.7717 | 1.0416 | 0.8924 | 0. 2325

. 050 . 3654 . 3041 . 2623 . 2447 . 3709 L8582 | 1.1872 | 1. 0093 L2772

. 070 L3944 . 3240 L2797 . 2821 . 3953 . 8839 | 1.2366 | 1. 0481 . 2932

o005 | -100 | 4304 | 3372 | 13000 | 3304 L1213 J9081 | 1.2889 | 1.0887 | 3109

: . 150 L4792 . 3759 . 3253 e 3982 . 4601 L0288 ¢ 1.3461 | 1,1325 . 3308

i . 200 . 5201 . 3976 L3H6 4561 . 4873 L9371 | 1.3836 | 1. 1606 . 3439

i . 250 . 5562 . 4152 . 3602 . 5075 . 5004 .9388 | 1.4103 | 1. 1803 . 3529

. 300 . 5890 . 4301 L3734 . 5541 . 5280 L9366 | 14301 | 1. 1946 . 3593

0. 06 0. 4115 1 0.3414 | 0.2950 : 0.3202 0. 4173 0.9172 | 1. 2882 | 1. 0889 . 0.3098

0.02 .20 . 5292 P 4055 . 3517 . 1823 . 4974 L9466 | 1. 4021 1. 1746 . 3505

. 50 L7041 L4757 414 L7210 . 5856 L9104 | 14779 | 1. 2281 . 3706

0. 0625 0. 1875 . 0. 5444 | 0. 4223 | 0. 3668 | 0. 5434 Q0. 5187 0.9712 | 1. 4148 | 1, 2068 | 0. 3661

. . 625 . 7681 . 4980 L4341 . 8185 . 6139 L8877 | 1.4950 ¢ 1. 2395 L3711
0.2 0. 05 0. 6134 | 0.5220 | 0. 4558 | 0. 9317 0. 6446 1,1925 | 1. 7611 | 1. 4532 | 0. 4722 ;
-2 -50 7210 | L4934 | L4305 | . 8250 - 6088 "9218 | 1.5144 | 1.2546 | .3835 !

(b) Yawed eylinder; g=1.0
5 A l e ge 0. [ ¢ 5 G on 0:;

0. 015 0.3321 @ 0.2582 | 0.2218 , 0.2218 0. 1625 0. 7352 | 1. 0197 0. 8744 0. 2291

L0500 L4177 L3125 . 2689 . 2689 L2447 . 8116 | 1. 1603 . 9874 L2720

1.0 . 100 : . 5010 . 3578 . 3084 . 3084 . 3304 . 8508 | 1. 2566 1. 0628 . 3033

.200 0 L6225 118 3558 . 3558 . 4561 . 8628 | 1. 3438 1. 1289 . 3314

. 300 . 7206 REEVE . 3870 . 3870 . 5541 L8482 1, 3844 1. 1585 L3417

0. 005 . 015 . 5373 . 3164 . 2459 L2743 P 2787 . 5560 . 9763 L7934 . 1866

: 3.0 . 050 . 6912 . 3833 . 2970 . 3327 P 4197 . 5872 ¢ 1. 1069 . 8878 . 2103

200 1. 0963 . 5074 . 3850 4412 0 7822 L5250 | 1. 2616 L9794 ! L1997

. 8081 | 2. 2064 .06975 | O R 1. 6262 . 0687 [ 1. 2860 . 2883 —. 1281

. 015 1. 1372 . 4099 . 3058 . 3555 L5134 . 0985 . 8411 . 6577 —. 1235

11,0 . 050 1. 4952 . 4980 . 3695 L4321 L7732 . 0272 . 9507 L7310 —. 2005

. 200 2. 5024 . 6647 . 4780 L8774 L 10441 —. 2593 | 1.0682 L7827 —. 5160

8622 | 5.5196 i 9211 | O I 2,.9361 |—1.1371 | 1. 0494 . 0600 —1.8733

0.0625 ' 1.0 0. 1875 | 0. 6463 ! 0. 4366 | 0.3782 | 0. 3782 | 0. 5434 0. 8959 | 1. 4051 1. 1755 0. 3528

T l : ’ . 625 . 9850 . 5228 . 4540 . 4540 . 8185 L7624 | 1. 4358 1. 1933 . 3350
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TABLE IV.—-BOUNDARY-LAYER PARAMETERS CALCULATED FOR ARBITRARY PRESSURE GRADIENT
BY USING LINEAR VISCOSITY-TEMPERATURE RELATION AT PRANDTI NUMBER OF 1.0
WITIT NONPOROUS WALL

(a) Negative pressure gradient; § >0

" . * * . * k4 ’ . * * L]
8 te x Ju G OF gr Ser G O Bep B8 e A S 8 OT fu LIS G Or B4r
1.0 05233 ] 0.4821 1.1306 | 1.6470 | 1.1882 . 0.4457 1.0 ] 0.6987 ; 0.5147 | 0.9349 & 1.5383 i 1.1215 0. 3914
a 1.8 . 5543 L4801 10837 | 1.6274 | 1.1730 4314 0 1.6 . 8233 . 5362 . 8061 i 1.5037 ; 1.0811 . 3422
3.0 . 6237 . 5039 L0852 | 1.5852 | 1.1418 . 3981 3.0 1.0907V L8772 . 5682 i 1.4088 & 1.0112 . 2249
6.5 .TR39 . 5349 L7852 | 1.5032 | 1.0813 . 3158 6.5 | 1.677. . 6507 L1634 . 1.2643 . 9052 —. 0688
Lo . 6070 . 4951 1.0530 ; 1.6116 : 1.1611 . 4271 1.0 i 1. 1090 L5574 L7200 | 1.4598 | 1.0478 . 3259
02 5 1.6 . 6836 . 5082 L9714 ¢ 1L5TRY | 1.1344 . 4014 15 5 1.6, 1.4348 . 5928 L5313 | 1.3834 L9915 . 2330
’ 3.0 L8506 . 5344 812t 1.5082 © 1.0844 . 3418 . ) 3.0 21149 . 6555 L2120 | 1.2658 . 9051 L0144
651 1.2221 . 5845 L5215 1.3935 . 9998 . 1058 6.5 3.5668 L7592 1 —.2850 | 1.1079 L7 —. 5178
1.6 . 6867 . 5069 . 9841 1. 5801 1.1376 . 4082 1.0 ] L4772 . 5906 L5578 | 1.3904 . 9963 . 2562
1.0 1.6 . 8047 . 5248 L8762 | 1.5333 [ 1.1020 L3712 La L6 L9737 . fi350 L3345 | 1.3050 . 9334 .1190
’ 3.0 . 1.0578 . 5593 L6753 | 1.4504 | 1.0416 . 2855 . 3.0 20997 LTIV | . 0296 1 11800 . B421 —. 1984
| 6.5 1.6111 . 6221 .3300 | 1.3199 . 9456 L0776 6.5 51729 L8323 | —. 57T 1.0213 L7268 | —.9547
| _—
1o 05811 0.4942 ) 1.0531 1.6130 | 1.1623 | 0.4238 LO 07386 | 0.5206 | 0.9044 | 1.5438 | 1.1106 0. 3837
= 0 1.6 . 6438 . 5070 L9704 | 15773 | 1.1358 . 3961 1o 1.6 8837 5444 . 7651 1.4849 | 1.0671 . 3287
z 3.0 L7811 . 5328 L8072 | 1.5095 | 1.0857 .3311 3.0 1.1939 . 5881 5114 1.3847 . 9932 197
6.5 1.0889 . 5828 J5057 | 1.3930 | 1.0000 1703 6.5 1.8712 . 6682 . 0861 1.2356 . 8841 —.1332
Lo L7608 . 5185 L0168 | 1.5488 | 1.1151 L3875 L0 L2405 . 5686 L6703 | 1.4364 0 1.0304 . 3101
0.5 5 1.6 Rulirg . 5410 LTR46 | 1.4937 | 1.0735 .3371 2.0 5 1.6 1.6283 . 6073 L4609 | 1.3565 L9714 . 2051
’ 3.0, 1.2479 . 5833 J5455 11,3983 | 10731 . 2185 o ’ 3.0 24366 L6748 C1348 11,2354 . 8825 —. 0423
B 6.5 1.9665 . 6577 1482 ¢ 1,2557 L8985\ —. 0671 8.5 41561 L7856 | —. 3816 | 1.0760 L7666 | —. 6447
1.0 L9277 . 5390 L8045 ; 1.4099 1 1,0780 . 3503 1.0} 1.6871 . 6052 L4974 5 1.3632 . 9760 . 2308
H 10 1.6 1.1648 . 5684 L6306 ¢ 1.4322 7 1.0279 . 2769 1.6 : 22804 . 6533 L2624 © 1.2749 L9111 . 0752
3 3.0 1.6623 L6215 .3550 ;| 1.3237 . 9481 L1074 L6130, 35081 L7345 7 —. 1170 1 1.1480 L8184 | —.2850
6.5 2.7281 LTI — 0955 ) 1.1724 L8374 ; —. 2089 6.5 6.0876 8637 | —. 6837 . 6893 L7033 | —1.1424
é 6.5 | 26,0805 | o 8630 12— 6835 | 40803 | 0.7033 |=—1.1417

o Ap=0.1.
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TABLE IV..- - BOUNDARY-LAYFR PARAMETERS CALCULATED FOR ARBITRARY PRESSURE GRADIENT
BY USING LINEAR VISCOSITY-TEMPERATURE RELATION AT PRANDTL NUMBER OF 1.0
WITH NONPOROUS WALL- -Coneluded

(b) Positive pressure gradient; §<0

.B (w A f’\: 0; or g.: 6:: Glr ()l: 0::
—0. 3264 1.0 0 0. 2478 3. 4567 2. 9751 2, 2048 0. 6067
—. 2800 . 2233 . 3932 1. 8257 1. 9707 1. 4282 L5912
—. 2747 1.6 0 . 2580 3. 2636 2. 8691 2, 1119 . 6083
—. 2000 . 3318 L4314 1. 5050 1, 8172 1. 3139 . 5380
0
—. 2000 . 1437 . 3616 2. 0953 2. 1154 1. 5370 . 6084
—. 1943 3.0 0 . 2688 3.0713 2, 6987 1. 9809 . 6093
—. 1000 . 3567 . 43904 1. 4395 1. 7878 1. 2921 . 5229
—. 1094 6.5 0 L2770 2. 9338 2. 6255 1. 9261 . 5963
--. 1000 : . 1782 . 3789 1. 9268 2. 0307 1. 4737 . 5887
—0. 2623 0 0. 3076 2. 5861 2. 4071 1. 7594 0. 6067
—. 2500 1.0 L1415 . 3778 1. 9224 2.0314 1. 4747 . 5837
—. 2000 . 2507 . 4152 1. 6136 1. 8747 1. 3572 L5472
—. 1913 L6 0 L3164 2. 4665 2, 3463 1. 7140 . 5923
—. 1500 : L2115 . 4046 1. 6905 1. 9151 1. 3877 . 5541
0.5
—. 1153 0 . 3235 2. 3733 2. 2993 1. 6789 . 5802
- . 1000 3.0 L1401 . 5834 1. 8526 2.0022 1. 4534 . 5653
—. 0500 . 3345 . 4393 1. 4266 1. 7854 1. 2906 L5133
- . 0573 6.5 0 . 3279 2.3173 2. 2711 1. 6579 . 5726
--. 0500 ) L1242 . 3792 1. 8795 2. 0191 1. 4663 . 5634
—0. 1988 1.0 0 0. 3258 2. 3588 2. 2870 1. 6694 0. 5854
--. 1366 0 . 3316 2. 2858 2. 2507 1. 6423 . 8752
—. 1000 1.6 . 2098 . 4086 L. 6479 1. 8970 1. 3744 . o427
—. 0500 . 3561 . 4457 . 3786 1. 7630 1. 2740 . 5030
.0
—. 0783 3.0 0 . 3361 2. 2308 2, 2234 1. 6219 . 5671
—. 0500 ) . 2407 . 4179 1. 5755 1. 8610 1. 3475 . 5322
-—. 0377 6.5 0 . 3388 2. 1979 2. 2071 1. 6098 . 5623
—. 0200 ) . 2805 . 4283 1. 4989 1. 8228 1. 3188 . 5214
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TARLE V. CONSTANTS IN INTERPOLATION FORMULAS FOR % AND o AS GIVEN BY
FEQUATIONS (47) AND (48)

¢ 3 N Pr A ‘-'o ZI oy B, 8, B, Yo Y V3 7 B
1.0 0. 0048 0. 04668 | —0, 01306 | —0.05096 |—0.12598 | 0.07776 | 0.24070 | 0 72755 V50667 ol e
L0 Lo 1.6 01044 05554 | —. 02282 | — 05734 | —. 13559 . 10768 21902 . 70699 VB24R5 il eemeeooo
oy Tt : 3.0 . 01452 LORTIR | —. 03756 | —. 05850 | —. 13697 15428 . 18900 . 67936 1117 R [,
6.5 .01420 .DE0L4 | —. 06010 | —. 05106 | —. 12669 . 22183 . 15380 . 64036 V62539 | | o
1.0 —. 02142 L02512 1 —, 01127 .00147 | — (8285 07237 . 12590 . 51503 . 43625 1.0 0
Lo o K 1.6 —. 01479 04080 | —. (2156 | —. 01229 | — 10065 10276 .12118 . 50587 P 44749 94443 .N3162
30 —. 00524 05727 | —. 04113 1 —. 02620 | —. 11404 . 15357 11113 . 49072 L 47123 00447 . 05008
6.5 00119 .06505 | —, 07135 | —. 03140 ; —. 11345 L2276 . 09456 . 47074 . 51843 88384 . 05393
1.0 —. 04720 . 01520 . 06139 L05276 ; —.0A336 | —. 07204 L 11252 . 50233 ; . 46955 1.0 0
1.6 —. 04480 . 02240 . 06209 L04264 ; —. 07212 | —.OR513 . 10488 . 40636 . 49527 94349 . 03163
...... 0.2 .7 3.0 —. 03800 . 03040 05428 . 03050 ’ —. 07672 | —. 01867 , 18435 48431 ! . 53297 90124 ! . 04984
6.3 —. 02760 . 03440 . D363% .01798 ! —. 07212 03767 , (17961 . 46586 ! 59276 87874 I 05348
1.0 ~. 02224 . 03648 . OI&IG .01263 . — 06686 . OROBO L0BRGT4 . 45421 ‘ . 64652 87303 . 05084
1.0 07856 L00602 | —. 17234 ¢ — 19850 | —. 04647 . 39452 L21182 . 49208 E 27758 1.0 0
1.6 . (18808 03050 | —. 20144 ; —. 19490 | — OGK7T 44192 . 19489 . 49148 P 30249 94293 ;o 03147
...... .02 .7 3.0 . (8852 L05326 | —.24295 | — 17998 | —. 08105 51571 P 17094 . 48562 P 33884 89844 | . (4964
6.5 L0704 06656 | —. 30068 | —. 15457 | —, 0OBAT . R2508 ! 14149 47390 P 39145 87192 i L (1h337
1.0 . OhR84 07094 | —. 35088 | —.13502 | — 0B400 L71TR5 . 12305 . 46555 | . 43428 86353 . 05080
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